
138 CHINESE OPTICS LETTERS / Vol. 5, No. 3 / March 10, 2007

Feature analysis of the scale factor variation on a
constant rate biased ring laser gyro
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Scale factor of a constant rate biased ring laser gyro (RLG) is studied both theoretically and experimentally.
By analyzing experimental data, we find that there are three main terms contributing to the scale factor
deviation. One of them is independent of time, the second varies linearly with time and the third varies
exponentially with time. Theoretical analyses show that the first term is caused by experimental setup,
the second and the third are caused by un-uniform thermal expension and cavity loss variation of the RLG.
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Scale factor is one of the key parameters describing the
ring laser gyro (RLG) performance. Especially in a rate
biased RLG, the scale factor deviation is the major fac-
tor affecting the RLG performance. Reducing the scale
factor variation is the main way to increase the accuracy
of a rate biased RLG. To overcome the scale factor varia-
tion, a rate biased RLG usually rotates clock-wise (CW)
and counter-clock-wise (CCW) symmetrically[1]. A spe-
cial type of rate biased RLG is constant rate biased RLG,
in which the RLG rotates in one direction in a constant
rate and the signal is measured every 360◦ rotation. With
the potential of high measuring accuracy, a constant rate
biased RLG is valuable for study on the effect caused by
the scale factor variation in a RLG and for study on rate
biased RLG.

According to Gao et al. and Aronowitz et al.[2,3], the
frequency difference between the CW and CCW travel-
ing wave of the RLG is
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where K0 = 4A/Lλ is the geometrical scale factor. Scale
factor correction (SFC) caused by abnormal dispersion
of the gain media is a function of the RLG working fre-
quency. SFC of the RLG is about minus hundreds ppm.
K = K0 cos θ(1 + SFC) is the scale factor, where θ is the
angle from the RLG’s sensitive axis to the direction of
angular velocity Ω. Ωl is the threshold of lock-in. Δυd is
drift, which can be treated as a constant.

At present, Ωl/K is about 100 deg./h and the rotating
rate is more than 100 deg./s in constant rate biased RLG.
So (Ωl/KΩ)2 ≤ 0.077 ppm, which can be neglected. Thus
Eq. (1) can be simplified as

Δυ = KΩ + Δυd. (2)

The scale factor K can be measured and calibrated.
The nominal value of K is Kn, which differs a little from
K. K can be written as K = Kn(1 + ΔSFC), where
ΔSFC is the change of SFC and it is about a few ppm.

In a constant rate biased RLG, the signal is sampled
every 360◦ rotation. Let the rotating angular rate be Ωr,
the vertical component of the earth’s rate be Ωe, and the
rotating period T = 360 deg./Ωr. Integrating Eq. (2) in
one rotating period, the RLG’s output can be obtained
by
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Equation (3) can be written as
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where ΔΩd is a constant written as
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KT
.

The unit of Ωr and Ωe is arcsec./s or deg./h, the unit
of K is pulse/arcsec. or Hz/deg./h. The items in the left
of Eq. (4) include the vertical component of the earth’s
rate Ωe and drift ΔΩd. The items in the right include
the output of a constant rate biased RLG and the cor-
rection due to scale factor variation. The form of Eq. (4)
is convenient to study the effect caused by scale factor
variation.

Changing Eq. (4) in an input/output mode, we obtain

Ωe + ΔΩd + ΔSFC × Ωr =
N −Kn × 1296000

KnT
. (5)

The items in the left include the input angular rate
to be measured and all kinds of errors, and the item in
the right is the output of a constant rate biased RLG.
Equations (4) and (5) are the two forms describing the
output of a constant rate biased RLG.

The experiment setup of a constant rate biased RLG
is shown in Fig. 1, which includes a rotating platform, a
mechanics on which the RLG is mounted, an optoelectric
synchronous trigger offering synchronous sampling sig-
nal, a data sampling circuit and a computer. The RLG’s
sensitive axis is in the vertical direction.

A number of experiments have been done with the
setup. One typical experiment result is shown in Fig.
2. In the experiment, the mean rotating rate Ωr is
about 243.35 deg./s, the rotating period T is about
1.48 s, the total circles is 19615 and the total time is
29018 s, the scale factor measured by the experiment
Kn = 2.1442501069 Hz/deg./h. The mean output of the
RLG Ωm = 7.365 deg./h. The vertical component of the
earth’s rate where the experiments are done Ωe = 7.1
deg./h. Difference of the two values is caused by the
non-horizontal installation of the RLG.

From Fig. 2 we can see a transitional process after
the RLG start-up, which is similar to the exponential

Fig. 1. Experiment setup of constant rate biased RLG.

Fig. 2. Typical experiment results of constant rate biased
RLG.

function. Following the transitional process the RLG’s
output becomes smooth. According to Eqs. (4) and (5),
the transitional process indicates the scale factor vari-
ation, namely ΔSFC is in action. The RLG’s output
changes about 0.15 deg./h in 8 hours and the noise is
about 0.4 deg./h, so it is difficult to study the effect
of ΔSFC with the angular rate-time curve. To empha-
size the effect of ΔSFC, we substract the mean value Ωm

from Eq. (5) and integrate it, the angle-time curve can
be obtained by

nT∫
0

(Ωe + ΔΩd + ΔSFC × Ωr − Ωm)dT

=

nT∫
0

(
N −Kn × 1296000

KnT
− Ωm)dT, (6)

where n is the circles. The result of Eq. (6) is shown as
the solid line in Fig. 3(a). If ΔSFC = 0, the solid line
in Fig. 3(a) should be a flat line passing zero. This in-
dicates the serious effect of ΔSFC, which is a function
of time. Based on the analysis of Fig. 2, the solid line in
Fig. 3(a) can be fitted with

Θ = b0 + b1t+ b2t
2 + b3e−αt. (7)

The fitting result is

Θ = −156.133− 0.01275t

+0.00000063t2 + 152.324e−0.00048t. (8)

The fitting result is shown as the dashed line in Fig.
3(a), which is in accordance with the experiment result.
With higher order terms of t, the fitting result is almost
equal to that of Eq. (8) and the coefficient of higher order
term is much smaller than b2 and almost equals to zero.
Results of many experiments are in accordance with the
above conclusion. The analysis indicates that Eq. (7) is
an impersonal description of the scale factor variation.
b2 in Eq. (7) shows an angular acceleration term in the

output of constant rate biased RLG, which is difficult to
be interpretted with the RLG theory. Let b2 = 0 and fit
the curve with 3 items in Eq. (7), we can get the result
shown as dashed line in Fig. 3(b), where the solid line is
the experiment result. Figure 3(b) shows an obvious
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Fig. 3. Output angle-time curve (solid line) of constant rate
biased RLG and the fitting curve (dashed line). (a) Curve
fitted with 4 terms; (b) curve fitted with 3 terms.

deviation of the fitting result. The above analysis shows
that b2 indicates a certain physical process. Though the
effect of the b2 term is less than that of the b1 term, the
b2 term is indispensable.

By differentiating Eq. (7), namely differentiating Eq.
(6), and comparing with Eq. (5), the scale factor varia-
tion can be obtained by

ΔSFC × Ωr =
dΘ
dt

= b1 + 2b2t− αb3e−αt. (9)

By differentiating Eq. (8) we can get the result shown
in Fig. 4(a), in which the mean value Ωm is added to the
differentiating result for comparison with Fig. 2. Obvi-
ously, Fig. 4(a) completely reflects the trend in Fig. 2.
According to Eq. (4), we can get the result shown in Fig.
4(b) by substracting the scale factor change ΔSFC from
the output of constant rate biased RLG, namely sub-
stracting the differentiating result of Eq. (8) from the
output shown in Fig. 2. Obviously, the performance of
constant rate biased RLG is improved.

Equation (9) can be written as

ΔSFC = b1/Ωr + (2b2/Ωr)t− (αb3/Ωr)e−αt

= ΔSFC0 + ΔSFC1t+ ΔSFC2e−αt, (10)

where the first term is a normal term, the second is an
angular acceleration term proportional to time, and the
third is an exponential term. According to the above
analysis, Eq. (10) is an impersonal description of the scale
factor variation in a constant rate biased RLG. Thus the
three terms reflect some error natures in constant rate
biased RLG. This will be analyzed in detail hereafter.

Fig. 4. (a) Curve of scale factor change; (b) correction result
of RLG’s output.

The normal term ΔSFC0 is deviation of the nominal
value Kn from the true value K. The nominal value Kn

is measured by experiment under certain conditions, so
it unavoidably differs a little from the true value K. Ac-
cording to Eq. (8), ΔSFC0 = −2.15 × 10−8 = −0.0215
ppm.

The second term with the coefficient ΔSFC1 is an an-
gular acceleration term proportional to time. According
to the RLG theory[4,5], no physical factor produces such
an error, so it is caused by external factor. Analysis
shows that it is due to the installation angle variation
caused by the thermal deformation. According to Eq.
(1), the scale factor K includes cos θ, where θ is unavoid-
able and it changes minutely when the RLG heats or
the environmental temperature changes. The value of θ
is relative to the mechanical structure, material of the
mechanism, especially the change of temperature, thus it
is relative to time. SFC by the change of θ is − sin θdθ.
When θ is small and dθ is much smaller, for example
dθ � 1′′, dθ varies linearly with time under the ordi-
nary temperature condition, namely dθ ∝ t. Thus the
SFC changes linearly with time. According to Eq. (8),
ΔSFC1 = 2.139 × 10−6 ppm/s = 0.0077 ppm/h. Let
θ = 1◦, and the change of θ in an hour can be attained
by dθ = ΔSFC1/(− sin θ) = −0.09′′, which is very small.
When θ is larger, dθ becomes larger and it is a compli-
cated function of time. When θ is near 90◦, experiments
show that dθ can change 10 arcsec./h, which perfectly
verifies the above suggestion.

The third term with the coefficients ΔSFC2 and α is
an exponential term. Analysis shows that it is caused by
the thermal effect when RLG starts up. According to
Ref. [3],

SFC = SFCn − aG

1 + xPo
+ (

√
1 − (

Ωl/K

Ω
)2 − 1), (11)
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where SFCn is the normal scale factor correction, namely
the first term mentioned above. The last term in Eq. (11)
is the SFC due to lock-in of RLG, which is the same as
that in Eq. (1). The second term due to the working me-
dia in RLG is relative to gain and loss. It can be written
as

SFCm = − aG

1 + xPo
, Po = Pc(G/Γ − 1), (12)

where G is gain, Γ is loss, Po is the output power, α, x,
and Pc are experiential parameters. By differentiating
Eq. (12) the effect of G and Γ can be attained, and the
ratio of them is(

∂

∂Γ
SFCm

) /(
∂

∂G
SFCm

)
=
xPc(G/Γ)2

1 − xPc
. (13)

For most practical gyros the G/Γ ratio is about 2 or
greater. According to Ref. [3], xPc is 0.56 and for most
practical gyros it is about several tenths. Equation (13)
shows that the effect of Γ is much larger than that of
G. And the variation of gain in RLG is minute because
of the discharge current control. Thus the variation of
SFCm is mainly arised from Γ. According to experiment
data offered by Aronowitz[3], SFCm and Γ change expo-
nentially with time. This indicates that in the process
of RLG start-up to stabilization, thermal deformation
caused by temperature variation results in exponential
change of Γ. SFCm reflects the third term of the above
experiment, namely

SFCm = ΔSFC2e−αt. (14)

According to the data in Eq. (8), ΔSFC2 = 1.23 ×
10−7 = 0.123 ppm, α = 4.8 × 10−4 (1/s). 1/α = 2083 s
is the thermal delay time after RLG start-up.

Through theoretical and experimental study on con-
stant rate biased RLG, the rules and formulas of scale

factor variation are concluded. Experiments show that
the SFC is composed of three terms, one is the normal
term, the second is the angular acceleration term and the
third is the exponential term. Theoretical analysis shows
that the normal term is a constant deviation of scale fac-
tor, the angular acceleration term is due to the installa-
tion angle variation caused by the thermal deformation.
The exponential term is due to the loss variation of the
RLG caused by the internal thermal effect. The results
in this paper such as Eq. (11) are in better accordance
with practical application than that of Aronowitz[3], so
they are more convenient to practical application and
real-time correction. Further more, the analysis includes
the effect of angular acceleration due to the installation
angle variation. These show great value to the applica-
tion of RLG and to the study of rate biased RLG.

At last, thanks for professor Xinwu Long in College of
Optoelectric Science and Technology, National Univer-
sity of Defense Technology, who provides the RLG with
high performance in the experiment. S. Qin’s e-mail ad-
dress is sqqin8@nudt.edu.cn.
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